Cytoplasmic and Genomic Effects on Non-Meiosis-Driven Genetic Changes in Brassica Hybrids and Allotetraploids from Pairwise Crosses of Three Cultivated Diploids
نویسندگان
چکیده
Nuclear-cytoplasmic interactions are predicted to be important in shaping the genetic changes in early stage of allopolyploidization. Our previous study shows the specific role of genome and cytoplasm affecting the chromosome pairing in Brassica hybrids and allotetraploids from pairwise crosses between three cultivated diploids with A, B and C genomes, respectively. Herein, to address how parental genomes and cytoplasm affects genomic, epigenetic and gene expression changes prior to meiosis in these hybrids and allopolyploids, their patterns of AFLP (Amplified fragment length polymorphism), mAFLP (Methylation AFLP) and cDNA-AFLP were compared with the progenitors, revealing the major absent bands within each genome. These changes varied under various cytoplasm backgrounds and genome combinations, following the significant order of AFLP> mAFLP> cDNA -AFLP. The frequencies of AFLP bands lost were positively correlated with the divergence degrees of parental genomes, but not obvious for those of mAFLP and cDNA-AFLP absent bands, and methylation change showed least variations among hybrids and within each genome. These changes within each genome followed the A>B>C hierarchy, except the highest rate of cDNA loss in B genome. Among three changes, only overall AFLP bands were significantly correlated with cDNA-AFLP, and their correlations varied within each genome. These changes in allotetraploids were mainly caused by genome merger rather than doubling. Parental genomes altered differently at three levels, responded to the types of cytoplasm and genome and their interaction or divergence. The result provides new clues for instant non-meiosis-driven genome restructuring following genome merger and duplication.
منابع مشابه
Cytoplasmic and genomic effects on meiotic pairing in Brassica hybrids and allotetraploids from pair crosses of three cultivated diploids.
Interspecific hybridization and allopolyploidization contribute to the origin of many important crops. Synthetic Brassica is a widely used model for the study of genetic recombination and "fixed heterosis" in allopolyploids. To investigate the effects of the cytoplasm and genome combinations on meiotic recombination, we produced digenomic diploid and triploid hybrids and trigenomic triploid hyb...
متن کاملGenome-specific differential gene expressions in resynthesized Brassica allotetraploids from pair-wise crosses of three cultivated diploids revealed by RNA-seq
Polyploidy is popular for the speciation of angiosperms but the initial stage of allopolyploidization resulting from interspecific hybridization and genome duplication is associated with different extents of changes in genome structure and gene expressions. Herein, the transcriptomes detected by RNA-seq in resynthesized Brassica allotetraploids (Brassica juncea, AABB; B. napus, AACC; B. carinat...
متن کاملGenetic analysis of grain yield, days to flowering and maturity in oilseed rape (Brassica napus L.) using diallel crosses
Twenty one F2 progenies derived from a 7×7 diallel crosses along with parents were evaluated for grain yield, flowering and maturity time. Due to significant genotypic effects for all traits, genetic analyses were performed on F2 progenies including analyses of combining ability and genetic components. The Analysis of variance revealed that both additive and non-additive genetic effects were in...
متن کاملEstimation of Combining Ability and Gene Action for Agro-Morphological Characters of Rapeseed (Brassica Napus L.) Using Line×Tester Mating Design
Combining ability effects were estimated for different agronomic characters in line × tester crossing program comprising 21 hybrids produced by crossing 7 lines and 3 testers. Parents and hybrids differed significantly for general combining ability (GCA) and specific combining ability (SCA) effects, respectively. The variance due to GCA and SCA showed that gene action was predominantly additive...
متن کاملEstimation of Combining Ability and Gene Action for Agro-Morphological Characters of Rapeseed (Brassica Napus L.) Using Line×Tester Mating Design
Combining ability effects were estimated for different agronomic characters in line × tester crossing program comprising 21 hybrids produced by crossing 7 lines and 3 testers. Parents and hybrids differed significantly for general combining ability (GCA) and specific combining ability (SCA) effects, respectively. The variance due to GCA and SCA showed that gene action was predominantly additive...
متن کامل